Description
Matrix metalloproteinases are members of a unique family of proteolytic enzymes that have a zinc ion at their active sites and can degrade collagens, elastin and other components of the extracellular matrix (ECM). These enzymes are present in normal healthy individuals and have been shown to have an important role in processes such as wound healing, pregnancy, and bone resorption. However, overexpression and activation of MMPs have been linked with a range of pathological processes and disease states involved in the breakdown and remodeling of the ECM. Such diseases include tumor invasion and metastasis, rheumatoid arthritis, periodontal disease and vascular processes such as angiogenesis, intimal hyperplasia, atherosclerosis and aneurysms. Recently, MMPs have been linked to neurodegenerative diseases such as Alzheimer's, and amyotrophic lateral sclerosis (ALS). Natural inhibitors of MMPs, tissue inhibitor of matrix metalloproteinases (TIMPs) exist and synthetic inhibitors have been developed which offer hope of new treatment options for these diseases.
Abbr
MMP-13, Recombinant (Human)
Product Overview
Full-length recombinant, human MMP-13 fused to a His•Tag sequence and expressed in S. frugiperda insect cells. This 452 amino acid proenzyme contains an N-terminal propeptide which confers latency to the proenzyme, a Ca2+- and Zn2+- binding catalytic domain, a hinge region, and a C-terminal hemopexin domain. Hydrolyzes collagen type II 5-6 times faster than collagens type I and III. Exhibits high activity towards gelatin and degrades α1-antichymotrypsin and plasminogen activator inhibitor-2.
Activity
>50 mU/mg protein
Unit Definition
One unit is defined as the amount of APMA-activated enzyme that will hydrolyze 1.0 µmol MCA-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH₂ per min at 37°C, pH 7.5.
Storage
< -70°C; Avoid freeze/thaw
Buffer
In 150 mM NaCl, 50 mM Tris-HCl, 5 mM CaCl₂, pH 7.5.
Synonyms
Collagenase-3; Matrix metallopeptidase 13; MMP13; CLG3; MANDP1; MMP-13